# Total synthesis of ( ) -ovalicin and analogues from L-quebrachitol 

Derek H. R. Barton, ${ }^{\text {a }}$ Sophie Bath, ${ }^{b}$ David C. Billington, ${ }^{c}$ Stephan D. Gero, ${ }^{b}$<br>Beatrice Quiclet-Sire ${ }^{*, b}$ and Mohammad Samadi ${ }^{*}{ }^{\boldsymbol{b}}$<br>${ }^{a}$ Department of Chemistry, Texas A \& M University, College Station, Texas 77843, USA<br>${ }^{b}$ Institut de Chimie des Substances Naturelles, C.N.R.S., 91198 Gif-sur-Yvette, Cedex, France<br>' Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France

We describe here the first chiral total synthesis of (-)-ovalicin and the synthesis of several related analogues, from the naturally occurring cyclitol L-quebrachitol.

## Introduction

(-)-Ovalicin was first isolated from cultures of Pseudorotium ovalis Stolk. ${ }^{1}$ The observed antibiotic, antitumour and immunosuppressive activities of $(-)$-ovalicin ${ }^{2}$ led Corey and Dittami to develop a total synthesis of racemic ovalicin from 2,4-dihydroxybenzoic acid. ${ }^{3}$ ( - )-Ovalicin is very similar in structure to the secondary metabolite fumagillin, which shows antitumour, ${ }^{4}$ antibacteriophage ${ }^{5}$ and antiamoebic ${ }^{6}$ activity. Fumagillin has also been synthesized in racemic form by Corey and Snider. ${ }^{\text {" }}$





In 1990 fumagillin was reported to have potent antiangiogenic activity, ${ }^{8}$ and recently a semi-synthetic derivative of fumagillin, AGM 1470, ${ }^{9}$ has entered clinical trials in AIDS patients suffering from the highly vascularised Kaposi's sarcoma.

Angiogenesis, the growth and development of new capillary blood vessels, is a process which is held under rigid suppression except in certain highly specific circumstances, such as the healing of wounds. ${ }^{10}$ Inappropriate angiogenesis is now recognised as a feature of many proliferative diseases, including diabetic retinopathy, psoriasis, and cancerous growth. ${ }^{11}$ In particular the growth and metastatic spread of solid tumours is dependent on angiogenesis, and inhibition of angiogenesis has been proposed as an alternative to classical cytotoxic cancer therapy. ${ }^{12}$
In order to develop fully the potential of ovalicin/fumagillintype angiogenesis inhibitors we have established a flexible chiral synthesis of this type of molecule, from the naturally occurring cyclitol L -quebrachitol, ${ }^{13}$ and we report here the total synthesis of ( - )-ovalicin and several analogues. A preliminary account of part of this work has recently appeared. ${ }^{14}$

## Results and discussion

L-Quebrachitol 1 was transformed into li-3,4:5,6-di- $O$ -cyclohexylidene-2-O-methyl-chiro-inositol using the literature method. ${ }^{15}$ This on benzylation with benzyl bromide in dimethylformamide (DMF) gave the fully protected compound $2(90 \%$ ) (Scheme 1). Selective removal of the less stable trans-ketal was accomplished by transacetalation using ethylene glycol in dichloromethane in the presence of a catalytic amount of toluene- $p$-sulfonic acid (PTSA). The resulting diol 3 ( $70 \%$ ) was then acetylated to give diacetate $4(98 \%)$. Acid cleavage of the remaining cis-ketal 4 gave the crystalline diol 5 ( $77 \%$ ).

In order to effect a Corey-Winter cis-deoxygenation, ${ }^{16}$ diol 5 was first treated with thiophosgene in dichloromethane in the presence of 4 -(dimethylamino)pyridine (DMAP), and the resulting thiocarbonate 6 was then heated at $120^{\circ} \mathrm{C}$ in trimethyl phosphite for 24 h to give the cyclohexene 7. Cleavage of the acetate groups of compound 7 by using ammonia in methanol then gave the olefin $8(82 \%$ from 6). Selective oxidation of the allylic hydroxy group of compound $\mathbf{8}$ was achieved using freshly prepared $\mathrm{MnO}_{2}$ (from $\mathrm{MnCl}_{2}$ and $\left.\mathrm{KMnO}_{4}\right)^{17}$ to give the $\alpha, \beta$-unsaturated ketone $9(50 \%)$. The unchanged starting allylic alcohol 8 was recovered and recycled.

Catalytic hydrogenation of enone 9 in ethanol in the presence of palladium on charcoal ( $5 \%$ ) gave the hydroxycyclohexanone 10 , which was benzoylated to give the crystalline benzoate 11 $(86 \%)$ (Scheme 2). Treatment of the ketone with methylenetriphenylphosphorane afforded the debenzoylated olefin $12(77 \%)$. Epoxidation ${ }^{18}$ of compound 12 with $m$-chloroperbenzoic acid (MCPBA) gave the cis-spiro-epoxide 13 as the major product $(86 \%)$ together with a small quantity of the trans-isomer 14 $(12 \%) .{ }^{1} \mathrm{H}$ NMR NOESY experiments on the major product confirmed the cis configuration of the epoxide. Swern ${ }^{19}$ oxidation of the cyclohexanol 13 furnished the keto epoxide 15 ( $94 \%$ ).

In order to reach our target analogues of $(-)$-ovalicin, different alkylations of the ketone were undertaken. The Shapiro ${ }^{20}$ reaction between the ketone 15 and l-methylvinyllithium, prepared in situ from acetone 2,4,6-triisopropylbenzenesulfonylhydrazone ${ }^{21}$ and butyllithium gave the addition product $16(60 \%)$. Epoxidation of compound 16 with MCPBA gave the bis-epoxide 17 ( $37 \%$ ).

When the ketone 15 was treated with trimethylsilylacetylene and butyllithium in diethyl ether the acetylene $\mathbf{1 8}$ was isolated ( $71 \%$ ). Hydrolysis of the silyl group of compound $\mathbf{1 8}$ followed by hydrogenation of the acetylene with Lindlar catalyst gave the olefin $19(84 \%)$. Epoxidation of this olefin by the method of Sharpless ${ }^{22}$ using tert-butyl hydroperoxide in the presence of vanadium acetylacetonate gave the bis-epoxide $20(86 \%)$ as the only product.



vi

7


9

Scheme 1 Reagents: i, (a) cyclohexanone, PTSA, $\mathrm{C}_{6} \mathrm{H}_{6}$; (b) NaH , DMF, BnBr ; ii, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{PTSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$; iv, TFA, aq. THF; v, $\mathrm{CSCl}_{2}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, $\mathrm{P}(\mathrm{OMe})_{3}$; vii, $\mathrm{NH}_{3}$, MeOH ; viii, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Likewise the keto epoxide 15 was transformed into the acetylene $21(77 \%)$ by reaction with pent-1-yne and butyllithium, and the product was subsequently partially hydrogenated using the Lindlar catalyst. The resulting olefin 22 $(88 \%)$ was then epoxidised by the method of Sharpless ${ }^{22}$ to afford the bis-epoxide $23(87 \%)$ as the only isolated product.

The $\alpha, \beta$-unsaturated ketone 9 was also a key intermediate for the synthesis of $(-)$-ovalicin ${ }^{1.14}$ itself (Scheme 3). Catalytic hydrogenation of 9 in ethanol in the presence of palladium on charcoal ( $10 \%$ ) gave the dihydroxycyclohexanone 24 ( $85 \%$ ). This was selectively benzoylated $(94 \%)$ at the more reactive $\alpha$-hydroxy group, and the benzoate was subsequently silylated to give the fully protected ketone $\mathbf{2 5}(97 \%)$.

To introduce the spirocyclic epoxide function, the ketone 25 was first treated with an excess of methylenetriphenylphosphorane to give the exocyclic olefin 26 ( $70 \%$ ). Subsequent

$\begin{array}{ll}10 R=H & 12\end{array}$

14


Scheme 2 Reagents: i, (a) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; (b) $\mathrm{PhCOCl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$; ii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, THF: iii, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, iv, DMSO, TFAA, $\mathrm{NEt}_{3}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; v, $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CH}, \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}$; vi, $\mathrm{MeC}(\mathrm{Li})=\mathrm{CH}_{2}$, THF, $-78{ }^{\circ} \mathrm{C}$; vii, (a) TBAF, THF; (b) $\mathrm{H}_{2}$, Lindlar catalyst, $\mathrm{C}_{6} \mathrm{H}_{6}$; viii, $\mathrm{VO}(\mathrm{acacO})_{2}, \mathrm{Bu}^{i} \mathrm{OOH}, \mathrm{C}_{6} \mathrm{H}_{6}$ : ix, pent-1-yne, $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}$
epoxidation of the olefin 26 with MCPBA gave the cis-spiroepoxide 28 as the major product ( $84 \%$ ) (together with $10 \%$ of the trans-isomer 27). Swern ${ }^{19}$ oxidation of the epoxide 28 then gave the keto epoxide 29 as an oil ( $88 \%$ ). The side chain of ( - )ovalicin was introduced by a Shapiro ${ }^{20}$ reaction between the ketone 29 and the vinyllithium 34, prepared in situ from 3,3dimethylallyl bromide and acetone 2,4,6-triisopropylbenzenesulfonylhydrazone, ${ }^{21}$ to give the diene $30(75 \%)$. This addition product 30 was then epoxidised by the method of Sharpless ${ }^{22}$ using tert-butyl hydroperoxide in the presence of vanadium acetylacetonate to give a mixture of two bisepoxides $(72 \%)$, which could only be separated on silica gel after desilylation. The isomeric bis-epoxides 31, 1.14 and 32 were isolated in the ratio $65: 35$. The bis-epoxide 31 was then converted into ( - )-ovalicin $33(78 \%)$ by oxidation of the secondary alcohol to the corresponding ketone by using pyridinium dichromate (PDC). The synthetic ovalicin 33 was identical in all respects with natural ovalicin. ${ }^{1.23}$ The synthetic route reported here allows the synthesis of molecules of the ovalicin/fumagillin class in chiral form, and in high overall yield. This synthetic approach is also able to provide analogues of these interesting biologically active molecules, and will allow further exploration of structureactivity relationships in this area.

24
25


28

iii

27
29
29
30

32

34
33
(-)-Ovalicin

Scheme 3 Reagents and conditions: $\mathrm{i}, \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; ii, (a) $\mathrm{PhCOCl}, \mathrm{Py}:(b) \mathrm{Et}_{3} \mathrm{SiCl}$, imidazole, DMF; iii, $\mathrm{Ph}{ }_{3} \mathrm{P}=\mathrm{CH}_{2}$, THF: iv, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ v, DMSO, TFAA. $\mathrm{Et}_{3} \mathrm{~N} .-78^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi. 34, THF toluene, $-78^{\circ} \mathrm{C}$; vii. (a) $\mathrm{VO}(\mathrm{acacO})_{2}, \mathrm{Bu}^{\mathrm{t}} \mathrm{OOH}, \mathrm{C}_{6} \mathrm{H}_{6}$; (b) TBAF. THF: viii, PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

## Experimental

## General

Column chromatography was carried out on silica gel 60 ( $0.040-0.063 \mu \mathrm{~m}$ ). TLC analyses were performed on thin-layer analytical plates 60 F 254 (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WP200 SY ( 200 MHz ), AC 250 ( 250 MHz ), AC $300(300 \mathrm{MHz}$ ) or WM $400(400 \mathrm{MHz})$ spectrometer. Chemical shifts ( $\delta$ ) are expressed in ppm from $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Coupling constants $J$ are in Hz . Most spectra were recorded in $\mathrm{CDCl}_{3}$. In other cases the solvent is specified. Mps were taken on a Reicher apparatus (model 276246) and are uncorrected. IR spectra were recorded on a Nicolet 205 FT-IR spectrometer. Routine mass spectra were recorded on an AEI MS9 spectrometer. Elementary analyses were carried out in the Institut de Chimie des Substances Naturelles. Optical rotations were measured on a Perkin-Elmer 241 polarimeter, and are given in units of $10^{1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

## 1L-1-O-Benzyl-3,4:5,6-di-O-cyclohexylidene-2-O-methyl-chiroinositol 2

A solution of $1 \mathrm{~L}-3,4: 5,6-\mathrm{di}-\mathrm{O}$-cyclohexylidene-2- $O$-methyl-chiro-inositol ( 77.88 g .220 mmol ) in DMF ( $440 \mathrm{~cm}^{3}$ ) was added
dropwise at $0^{\circ} \mathrm{C}$ under argon to a stirred suspension of sodium hydride ( $50 \%$ in oil; $15.84 \mathrm{~g}, 330 \mathrm{mmol}$ ) in DMF ( $220 \mathrm{~cm}^{3}$ ). Benzyl bromide was then added ( $39.2 \mathrm{~cm}^{3}, 330 \mathrm{mmol}$ ) and the mixture was stirred at room temperature overnight. Methanol was added and the solvent was evaporated off under reduced pressure. The residue was taken up in ethyl acetate $\left(1 \mathrm{dm}^{3}\right)$ and the organic layer was washed with saturated brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The residue was chromatographed over silica gel using gradient elution (ethyl acetate-heptane; $2: 8$ ) to give title compound $\mathbf{2}$ as an oil ( 87.9 g , $90 \%),[\alpha]_{\mathrm{D}}^{20}-13\left(c 1.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; m / z(\mathrm{CI}) 445\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.75\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right.$ of benzyl), 4.35, 4.1, 3.55-3.5 ( $2 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}-6-\mathrm{H}), 3.45(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe})$ and I.65-1.3 ( $20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ of cyclohexylidene); $\delta_{\mathrm{C}}(62.5$ $\mathrm{MHz}) 138.0,128.4,127.9$ and $127.8(\mathrm{Ph}), 112.2$ and $110.6(\mathrm{Cq}$ of cyclohexylidene), 79.3, 79.0, 76.97, 76.33, 76.04 and 75.87 (C-I-C-6), $73.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 37.9,36.5,34.8,25.1,24.0,23.7$ and $23.6\left(\mathrm{CH}_{2}\right.$ of cyclohexylidene) (Found: C, 70.2; H, 8.2. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{6}$ requires $\mathrm{C}, 70.24 ; \mathrm{H}, 8.16 \%$ ).

## 1L-1-O-Benzyl-5,6-O-cyclohexylidene-2-O-methyl-chiro-inositol 3 <br> To a solution of compound $2(87.9 \mathrm{~g}, 197 \mathrm{mmol})$ in

 dichloromethane ( $1 \mathrm{dm}^{3}$ ) was added ethylene glycol ( $11 \mathrm{~cm}^{3}$, 1 mol equiv.) and PTSA monohydrate ( $3.74 \mathrm{~g}, 0.1$ mol equiv.). After 30 min , a precipitate was laid down. The reaction mixture was neutralised with triethylamine ( $20 \mathrm{~cm}^{3}$ ) and diluted with dichloromethane ( $500 \mathrm{~cm}^{3}$ ), washed successively with water, saturated aq. sodium hydrogen carbonate ( $500 \mathrm{~cm}^{3}$ ) and water. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The residue was chromatographed over silica gel by using gradient elution (ethyl acetate-heptane; 4:6) to give diol 3 as an oil $(50.2 \mathrm{~g}, 70 \%),[\alpha]_{\mathrm{D}}^{20}-53(c 1.075$; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m/z (CI) $365\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.3\left(1 \mathrm{H}, \mathrm{dd}, J_{6.1} 3, J_{6.5} 6.5,6-\mathrm{H}\right), 4.15(1$ $\left.\mathrm{H}, \mathrm{t}, J_{5.4}=J_{5.6}=6.5,5-\mathrm{H}\right), 4.1\left(1 \mathrm{H}, \mathrm{t}, J_{1.2}=J_{1.6}=3,1-\mathrm{H}\right)$, $3.9\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{3,2}=8,3-\mathrm{H}\right), 3.6\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3}=8, J_{4.5}\right.$ $6.5,4-\mathrm{H}) 3.46-3.36(4 \mathrm{H}, \mathrm{m}$ and s, OMe, 2-H), $3.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.8(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $1.68-1.55\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclohexylidene); $\delta_{\mathrm{C}}(62.5 \mathrm{MHz}) 138.0,128.4$ and 127.8 ( Ph ), 110.3 (Cq of cyclohexylidene), 81.5 (C-1), 78.2, 76.2 and 75.1 ( $\mathrm{C}-2,-5$ and -6 ), $73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5$ and $71.4(\mathrm{C}-3,-4), 58.1$ (OMe), 37.7, 35.0, 24.9, 24.0 and $23.7\left(\mathrm{CH}_{2}\right.$ of cyclohexylidene) (Found: C, 66.2; H, 7.9. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\mathrm{C}, 65.92 ; \mathrm{H}$, $7.74 \%$ ).
## 1L-3,4-Di-O-acetyl-1-O-benzyl-5,6-O-cyclohexylidene-2-O-methyl-chiro-inositol 4

To a solution of diol $3(46 \mathrm{~g}, 126 \mathrm{mmol})$ in dry pyridine ( 440 $\mathrm{cm}^{3}$ ) was added, at $0^{\circ} \mathrm{C}$, acetic anhydride ( $120 \mathrm{~cm}^{3}, 1.26 \mathrm{~mol}$ ). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ overnight. Ice was added to remove the excess of acetic anhydride and the solvent was evaporated off under reduced pressure. The residue was taken up in dichloromethane and the solution was washed successively with saturated aq. sodium hydrogen carbonate ( $400 \mathrm{~cm}^{3}$ ), water ( $400 \mathrm{~cm}^{3}$ ) and brine ( $400 \mathrm{~cm}^{3}$ ). The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The residue was chromatographed over silica gel using a gradient elution (ethyl acetate-heptane; $3: 7$ ) to give diacetate 4 as an oil ( $54.8 \mathrm{~g}, 98 \%$ ) $[\alpha]_{\mathrm{D}}{ }^{20}-56\left(c 3.36 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; m / z$ (CI) 449 $\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.1(2 \mathrm{H}, \mathrm{m}, 3-$ and $4-$ $\mathrm{H}), 4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.40-4.27(2 \mathrm{H}, \mathrm{m}, 5$ - and $6-\mathrm{H}), 3.96$ ( 1 $\left.\mathrm{H}, \mathrm{dd}, J_{1.2} 2, J_{1.6} 4,1-\mathrm{H}\right), 3.45(4 \mathrm{H}, \mathrm{m}$ and s, $2-\mathrm{H}$ and OMe$)$, 2.05-2.0 $(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Ac})$ and $1.8-1.2\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclohexylidene); $\delta_{\mathrm{C}}(50 \mathrm{MHz}) 170.2$ (COMe), 138.0, 128.4 and $127.9(\mathrm{Ph}), 111.1(\mathrm{Cq}$ of cyclohexylidene), $81.1(\mathrm{C}-1), 76.5$, 76.08 and 75.4 (C-2, -5 and -6), 74.6 and 72.4 (C-3 and -4), 72.9 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 58.9(\mathrm{OMe}), 37.6,35.2,25.1,24.0$ and $23.8\left(\mathrm{CH}_{2}\right.$ of
cyclohexylidene) and 20.9 ( MeCO ) (Found: C, 64.1; H, 7.3. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{8}$ requires C, 64.27; $\mathrm{H}, 7.19 \%$ ).

## 1L-3,4-Di-O-acetyl-1-O-benzyl-2-O-methyl-chiro-inositol 5

A mixture of compound $4(23.74 \mathrm{~g}, 53 \mathrm{mmol})$ and a solution of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA)-water-tetrahydrofuran (THF) $(2: 1: 1 ; 175$ $\mathrm{cm}^{3}$ ) was stirred at room temp. for 5 h . The solvent was evaporated off under reduced pressure and the residue was taken up in dichloromethane ( $500 \mathrm{~cm}^{3}$ ). The solution was washed successively with saturated aq. sodium hydrogen carbonate ( $200 \mathrm{~cm}^{3}$ ), water ( $200 \mathrm{~cm}^{3}$ ) and brine ( $200 \mathrm{~cm}^{3}$ ). The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The residue was chromatographed over a silica gel column (dichloromethane-ethanol; 9.5-0.5) to give crystalline diol 5 ( $15 \mathrm{~g}, 77 \%$ ), mp $133^{\circ} \mathrm{C}$ (from heptane); $[\alpha]_{\mathrm{D}}^{20}-55$ (c 1.42 ; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $m / z(\mathrm{CI}) 369\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.33(5 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{Ph}), 5.43\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{3,2}=10,3-\mathrm{H}\right) 5.3\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=\right.$ $\left.J_{4.3}=10,4-\mathrm{H}\right), 4.7\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.1-3.95(3 \mathrm{H}, \mathrm{m}, 1-, 5-$ and $6-\mathrm{H}), 3.66\left(1 \mathrm{H}\right.$, dd, $\left.J_{2,3} 10, J_{1,2} 3,2-\mathrm{H}\right), 3.4(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.8(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $2.05(6 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; \delta_{\mathrm{C}}(62.5 \mathrm{MHz}) 171.9$ and 170.1 (COMe), 138 (Cq Ph), 128.4 and $127.8(\mathrm{Ph}), 79.3(\mathrm{C}-$ 1), 74.8 and 74.3 (C-3 and -4), 71.8 (C-2), 70.5 and 70.3 (C-5 and $-6), 58.6(\mathrm{OMe})$ and 20.9 (COMe) (Found: C, 59.0; H, 6.5. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{8}$ requires $\mathrm{C}, 58.68 ; \mathrm{H}, 6.56 \%$ ).

## 1L-3,4-Di-O-acetyl-1-O-benzyl-2-O-methyl-5,6-O-thio-carbonyl-chiro-inositol 6

To a solution of diol $5(14.72 \mathrm{~g}, 40 \mathrm{mmol})$ and DMAP ( 11.71 $\mathrm{g}, 96 \mathrm{mmol}$ ) in dry dichloromethane ( $160 \mathrm{~cm}^{3}$ ) was added under argon, at $0^{\circ} \mathrm{C}$, thiophosgene ( $3.76 \mathrm{~cm}^{3}, 48 \mathrm{mmol}$ ). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and silica gel was added ( 80 g). After filtration the dichloromethane was evaporated off. The residue was taken up in diethyl ether and the suspension was filtered. The residue containing the thiocarbonate 6 was used for the next step without further purification; $[\alpha]_{\mathrm{D}}^{20}-27(c$ $0.78 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $m / z(\mathrm{CI}) 411\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.36(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}), 5.3-5.15(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.15-5.08(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 5.02$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6.1} 2,6-\mathrm{H}\right), 4.73\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3}\right.$ $\left.6.5, J_{1.2} 2,2-\mathrm{H}\right), 3.5(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.43\left(1 \mathrm{H}, \mathrm{t}, J_{1.2}=J_{1.6}=2\right.$, $1-\mathrm{H})$ and 2.1 and $2.05(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Ac}) ; \nu_{\text {max }}($ neat $) / \mathrm{cm}^{1}{ }^{1} 1752$; $\delta_{\mathrm{C}}(62.5 \mathrm{MHz}) 169.5(\mathrm{COMe}) 138.0,128.6,128.3$ and $128.0(\mathrm{Ph})$, 83.4, 80.1 and $75.4(\mathrm{C}-1,-2,-5$ and -6$), 72.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.9$ and 71.3 (C-3 and -4), $59.2(\mathrm{OMe})$ and 20.7 (COMe) (Found: C, $55.55 ; \mathrm{H}, 5.15 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}$ requires C, $55.60 ; \mathrm{H}, 5.4 \%$ ).

## ( $1 R, 2 S, 5 R, 6 R$ )-5-Benzyloxy-6-methoxycyclohex-3-ene-1,2diyl diacetate 7

A mixture of the above crude thiocarbonate 6 and trimethyl phosphite ( $120 \mathrm{~cm}^{3}$ ) was heated under reflux and under argon for 24 h . The excess of trimethyl phosphite was removed by evaporation under reduced pressure and the residue was chromatographed on a silica gel column with gradient elution (ethyl acetate-heptane; $4: 6$ ) to give crystalline compound 7 (11 g, $82 \%$ from 5 ), $\mathrm{mp} 54-56^{\circ} \mathrm{C}$ (from diethyl ether-pentane); $[\alpha]_{\mathrm{D}}^{20}-48\left(c 0.34 ; \mathrm{CHCl}_{3}\right) ; m / z(\mathrm{CI}) 335\left(\mathrm{MH}^{+}\right), 275(\mathrm{MH}-$ $\left.\mathrm{MeCO}_{2} \mathrm{H}\right)^{+}, 215\left(\mathrm{MH}-2 \mathrm{MeCO}_{2} \mathrm{H}\right)^{+}$and $227(\mathrm{MH}-$ $\left.\mathrm{PhCH}_{2} \mathrm{OH}\right)^{+} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.1(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$, $4-\mathrm{H}), 4.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.38(1 \mathrm{H}, \mathrm{t}, 1-\mathrm{H}), 4.3\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{2,3} 6\right.$, $2-\mathrm{H}), 3.96\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2,6-\mathrm{H}\right), 3.5(4 \mathrm{H}, \mathrm{m}$ and s, $5-\mathrm{H}$ and $\mathrm{OMe})$ and 2.1 and $2.06(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Ac}) ; \delta_{\mathrm{C}}(62.5 \mathrm{MHz}) 170.2$ and 170.0 (COMe), 138.0, 128.3, 128.1, 128.0, 127.7 and 127.6 (Ph, $\mathrm{HC}=\mathrm{CH}), 79.5(\mathrm{C}-5), 72.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.0(\mathrm{C}-6), 71.1$ and 69.9 ( $\mathrm{C}-1$ and -2 ), 58.3 (OMe) and 20.9 ( MeCO ) (Found: C, 64.8; H, 6.4. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $\mathrm{C}, 64.66 ; \mathrm{H}, 6.63 \%$ ).

## ( $1 R, 2 S, 5 R, 6 S)$-5-Benzyloxy-6-methoxycyclohex-3-ene-1,2-diol

 8A solution of diacetate $7(10.35 \mathrm{~g}, 31 \mathrm{mmol})$ in methanol ( 3 $\mathrm{cm}^{3} \mathrm{mmol}^{1}$ ) was saturated with ammonia and left overnight.

The reaction mixture was then evaporated under reduced pressure and the residue was chromatographed on a silica gel column with gradient elution (ethyl acetate-heptane; 7:3) to afford the $\operatorname{diol} \mathbf{8}$ as an oil $(7.75 \mathrm{~g}, 100 \%), \mathrm{m} / \mathrm{z}$ (CI) $251\left(\mathrm{MH}^{+}\right)$, $233\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 215\left(\mathrm{MH}-2 \mathrm{H}_{2} \mathrm{O}\right)^{+}$and $201(\mathrm{MH}-$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}\right)^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.8(2 \mathrm{H}, \mathrm{s}$, 3- and $4-\mathrm{H}$ ), $4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.05(3 \mathrm{H}, \mathrm{m}, 1-, 2$ - and $5-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.4(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $3.1(1 \mathrm{H}$, dd, $6-\mathrm{H}) ; \delta_{\mathrm{C}}(62.5 \mathrm{MHz}) 138.4,128.2,127.8$ and $127.6(\mathrm{Ph}), 133.2$ and $124.7(\mathrm{C}-3$ and -4$), 80.8(\mathrm{C}-5), 72.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.4(\mathrm{C}-6)$, 71.5 and $69.3(\mathrm{C}-1$ and -2$)$ and $57.4(\mathrm{OMe}) ; v_{\max }($ neat $) / \mathrm{cm}^{1}$ 3400 (Found: C, 67.1; H. 7.1. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, 67.18; H , $7.25 \%$ ).

## (4R,5S,6S)-4-Benzyloxy-6-hydroxy-5-methoxycyclohex-2enone 9

To a solution of the diol $\mathbf{8}(4.25 \mathrm{~g}, 17 \mathrm{mmol})$ in dry dichloromethane ( $85 \mathrm{~cm}^{3}$ ) was added $\mathrm{MnO}_{2}(5.91 \mathrm{~g}, 4 \mathrm{~mol}$ equiv.). The reaction mixture was stirred under argon at room temp. overnight and was then filtered through a pad of silica gel and $\mathrm{Na}_{2} \mathrm{SO}_{4}$, which was then washed with dichloromethane ( 50 $\mathrm{cm}^{3}$ ) and ethyl acetate ( $50 \mathrm{~cm}^{3}$ ). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The residue was chromatographed over a silica gel column (ethyl acetate-heptane; $1: 1$ ) to yield enone 9 as an oil ( $2.11 \mathrm{~g}, 50 \%$ ), $[\alpha]_{\mathrm{D}}^{20}-172\left(c 1.2 ; \mathrm{CHCl}_{3}\right) ; m / z(\mathrm{CI}) 249\left(\mathrm{MH}^{+}\right), 217(\mathrm{MH}-$ $\left.\mathrm{CH}_{3} \mathrm{OH}\right)^{+}$and $141\left(\mathrm{MH}-\mathrm{PhCH}_{2} \mathrm{OH}\right)^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.4(5$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.92\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 6, J_{2.3} 10,3-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{d}, J_{2.3}\right.$ $10,2-\mathrm{H}), 4.8\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.7\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 10,6-\mathrm{H}\right), 4.4(1 \mathrm{H}$, dd, $\left.J_{4.5} 3, J_{3.4} 6,4-\mathrm{H}\right), 3.6(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $3.45(2 \mathrm{H}, \mathrm{dd}+\mathrm{br}$ s, $\left.J_{5.6} 10, J_{4.5} 3,5-\mathrm{H}, \mathrm{OH}\right) ; \delta_{\mathrm{c}}(62.5 \mathrm{MHz}) 198.4(\mathrm{C}-1), 145.2(\mathrm{C}-$ 3), 137.6 (Ph), 129.0 (C-2), 128.5 and $128.0(\mathrm{Ph}), 82.6$ (C-4), 74.1 (C-5), $73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.6(\mathrm{C}-6)$ and $58.8(\mathrm{OMe})$; $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1700$ (Found: C, 67.3; H, 6.6. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 67.74; H, 6.45\%).

## (2S,3S,4R)-4-Benzyloxy-2-hydroxy-3-methoxycyclohexanone 10

A solution of enone $9(2.6 \mathrm{~g}, 10.48 \mathrm{mmol})$ in ethanol $\left(50 \mathrm{~cm}^{3}\right)$ was hydrogenated ( 1 atm ) in the presence of palladium on charcoal $(5 \%)(0.26 \mathrm{~g})$ for 110 min . The solution was filtered on a Celite pad and the filtrate was evaporated to give ketone $\mathbf{1 0}$ as an oil, which was utilised without further purification. Product had $m / z(\mathrm{CI}) 250\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.78(2$ $\left.\mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J_{2.3} 10,2-\mathrm{H}\right), 4.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$, $3.5(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.4(1 \mathrm{H}, \mathrm{d}, \mathrm{OH}), 3.17\left(1 \mathrm{H}, \mathrm{dd}, J_{3.2} 10, J_{3.4} 2\right.$, $3-\mathrm{H}), 2.8\left(1 \mathrm{H}, \mathrm{td}, J_{6.6}=J_{6.5}=13.5, J_{6.5} \cdot 6,6-\mathrm{H}\right), 2.47-2.16$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}^{\prime}\right)$ and $1.51\left(1 \mathrm{H}, \mathrm{tq}, J_{5 \cdot 6} .1, J_{5,5} .13 .5\right.$, $\left.5-\mathrm{H}^{\prime}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3470$ and 1720.

## ( $1 S, 2 R, 3 R$ )-3-Benzyloxy-2-methoxy-6-oxocyclohexyl benzoate 11

The crude ketone $\mathbf{1 0}$ was dissolved in dry pyridine $\left(30 \mathrm{~cm}^{3}\right)$ and treated at $0^{\circ} \mathrm{C}$ with benzoyl chloride $\left(1.45 \mathrm{~cm}^{3}, 12.5 \mathrm{mmol}\right)$. The mixture was stirred at room temp. overnight. Ice was added and the solvent was evaporated off. The residue was dissolved in dichloromethane ( $200 \mathrm{~cm}^{3}$ ), and washed successively with saturated aq. sodium hydrogen carbonate, water and brine. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The residue was chromatographed over a silica gel column (ethyl acetate-heptane; 2:8) to give crystalline ester 11 ( $3.19 \mathrm{~g}, 86 \%$ ), mp $114-115^{\circ} \mathrm{C}$ (from diethyl ether-hexane); $[\alpha]_{\mathrm{D}}^{20}-94\left(c 0.5 ; \mathrm{CHCl}_{3}\right) ; m / z(\mathrm{CI}) 355\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $8.06-7.33(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.88\left(1 \mathrm{H}, \mathrm{d}, J_{2} 10,1-\mathrm{H}\right), 4.78(2 \mathrm{H}$, q, $\mathrm{OCH}_{2} \mathrm{Ph}$ ), $4.2(1 \mathrm{H}$, br s, $3-\mathrm{H}), 3.61\left(1 \mathrm{H}\right.$, dd, $J_{2.1} 10, J_{2.3} 2.5$, $2-\mathrm{H}), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.86(1 \mathrm{H}, \mathrm{td}, 5-\mathrm{H}), 2.3\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and $1.55\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{c}}(62.5 \mathrm{MHz}) 202(\mathrm{CO}), 165.7(\mathrm{COPh})$, $138.3(\mathrm{Cq}$ of Ph$), 133.2,129.9,128.4$ and 127.7 (Ph), $83.9(\mathrm{C}-3)$, $78.9(\mathrm{C}-1), 72.8(\mathrm{C}-2) .72 .2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 58.7(\mathrm{OMe}), 34.5(\mathrm{C}-5)$
and $25.0(\mathrm{C}-4)$ (Found: $\mathrm{C}, 69.5 ; \mathrm{H}, 6.15 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 69.42 ; \mathrm{H}, 6.10 \%$ ).

## ( $1 R, 2 S, 3 R$ )-3-Benzyloxy-2-methoxy-6-methylenecyclohexanol 12

To a solution of methyltriphenylphosphonium bromide ( $15 \mathrm{~g}, 42$ mmol) in THF ( $42 \mathrm{~cm}^{3}$ ) was added dropwise, at $0^{\circ} \mathrm{C}$ under argon, butyllithium ( $\left.1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 27.5 \mathrm{~cm}^{3}, 38.5 \mathrm{mmol}\right)$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. A solution of ketone $11(2.48 \mathrm{~g}, 7 \mathrm{mmol})$ in THF $\left(14 \mathrm{~cm}^{3}\right)$ was added dropwise. The mixture was stirred for 1 h at $-10^{\circ} \mathrm{C}$ and for 2 h at $20^{\circ} \mathrm{C}$. and was then poured into ice-water saturated with ammonium chloride. After extraction with diethyl ether, the organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The residue was chromatographed over a silica gel column (ethyl acetate-heptane; 3:7) to afford the allyl alcohol $12(1.33 \mathrm{~g}, 77 \%),[\alpha]_{\mathrm{D}}^{20}-104\left(c 1.2 ; \mathrm{CHCl}_{3}\right)$; $m / z(\mathrm{CI}) 249\left(\mathrm{MH}^{+}\right), 231\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 217(\mathrm{MH}-$ $\left.\mathrm{CH}_{3} \mathrm{OH}\right)^{+} .199\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{OH}\right)^{+}$and $141(\mathrm{MH}-$ $\left.\mathrm{PhCH}_{2} \mathrm{OH}\right)^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.1(1 \mathrm{H}, \mathrm{d}$, $=\mathrm{CH} H), 4.85(1 \mathrm{H}, \mathrm{d},=\mathrm{CHH}), 4.65\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44(1 \mathrm{H}$, $\left.\mathrm{d}, J_{1.2} 9,1-\mathrm{H}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.4(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.98(1 \mathrm{H}$, dd, $\left.J_{2.3} 3, J_{2.1} 9,2-\mathrm{H}\right), 2.43\left(1 \mathrm{H}, \mathrm{td}, J_{5.5}, 14,5-\mathrm{H}^{\prime}\right), 2.12(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{2}\right), 1.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $1.31\left(1 \mathrm{H}, \mathrm{tq}, J_{5.5} .14, J_{5.4}=\right.$ $\left.J_{5.4}=5 . J_{5.7} 2.5-\mathrm{H}\right) ; \delta_{\mathrm{C}}(62.5 \mathrm{MHz}) 146.6(\mathrm{C}-6), 138.7(\mathrm{Cq}$ of $\mathrm{Ph}), 128.4$ and $127.7(\mathrm{Ph}), 106.9\left(=\mathrm{CH}_{2}\right), 86.9(\mathrm{C}-3), 72.1$ and $71.5(\mathrm{C}-2$ and -1$), 71.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 57.2(\mathrm{OMe})$ and 28.3 and 27.9 (C-5 and -4 ); $v_{\text {max }}($ neat $) / \mathrm{cm}^{1} 3450,1662$ and 1115 (Found: C , 72.6 ; H. 8.1. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 72.55 ; \mathrm{H}, 8.12 \%$ ).

## (4S,5S,6R)-6-Benzyloxy-5-methoxy-1-oxaspiro[2.5]octan-4-ols 13 and 14

To a solution of the allyl alcohol $12(1.24 \mathrm{~g}, 5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was added MCPBA ( $\left.70 \% ; 1.355 \mathrm{~g}, 5.5 \mathrm{mmol}\right)$ in portions at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $100 \mathrm{~cm}^{3}$ ) and washed successively with saturated aq. sodium hydrogen carbonate ( $50 \mathrm{~cm}^{3}$ ) and saturated brine ( $50 \mathrm{~cm}^{3}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated off under reduced pressure. Flash chromatography with ethyl acetateheptane gradient ( $1: 1$ ) elution gave the cis-epoxide $\mathbf{1 3}$ as an oil $(86 \%)$ and the trans-epoxide $14(12 \%)$.

Epoxide cis-13: $[\alpha]_{\mathrm{D}}^{20}-70.4$ (c 0.5; $\mathrm{CHCl}_{3}$ ); m/z (CI) 265 $\left(\mathrm{MH}^{+}\right), 247\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 233\left(\mathrm{MH}-\mathrm{CH}_{3} \mathrm{OH}\right)^{+}$and 157 $\left(\mathrm{MH}-\mathrm{PhCH}_{2} \mathrm{OH}\right)^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.65(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right) .4 .2\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 9,4-\mathrm{H}\right), 4.1(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.41$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.25\left(1 \mathrm{H}, \mathrm{dd}, J_{5.4} 9, J_{5.6} 2,5-\mathrm{H}\right), 3.13\left(1 \mathrm{H}, \mathrm{d}, J_{2.2}\right.$. $5,2-\mathrm{H}), 2.9(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 2.64\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} 5,2-\mathrm{H}^{\prime}\right), 2.23(1 \mathrm{H}$, qd, $\left.J_{8.8^{\prime}} 14, J_{8.7}=J_{8.7^{\prime}}=4,8-\mathrm{H}\right), 2.03\left(1 \mathrm{H}, \mathrm{dq}, J_{7.7} \cdot 14, J_{7.8}\right.$ $\left.7.5, J_{7.8} .4,7-\mathrm{H}\right), 1.64\left(1 \mathrm{H}, \mathrm{tq}, J_{7.6} 2, J_{7^{\prime} .8} .4,7-\mathrm{H}^{\prime}\right)$ and $1.28(1$ $\left.\mathrm{H}, \mathrm{dt}, 8-\mathrm{H}^{\prime}\right): \delta_{\mathrm{C}}(62.5 \mathrm{MHz}) 138.6(\mathrm{Cq}$ of Ph$), 128.3-127.6(\mathrm{Ph})$, $84.5(\mathrm{C}-6), 72.4(\mathrm{C}-5), 71.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.8(\mathrm{C}-4), 59.9(\mathrm{C}-3), 57.6$ (OMe), $50.2(\mathrm{C}-2)$ and 26.4 and $24.7(\mathrm{C}-7$ and -8$) ; v_{\text {max }}($ neat $)$ $\mathrm{cm}^{1}$ 3387, 1650, 1568 and 1093 (Found: C, 68.1; H, 7.7. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 68.18 ; \mathrm{H}, 7.57 \%$ ).

Epoxide trans-14: $[\alpha]_{\mathrm{D}}^{20}-67.2\left(c 0.5 ; \mathrm{CHCl}_{3}\right) ; m / z(\mathrm{CI}) 265$ $(\mathrm{MH})^{+}, 247\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 233\left(\mathrm{MH}-\mathrm{CH}_{3} \mathrm{OH}\right)^{+}$and 157 $\left(\mathrm{MH}-\mathrm{PhCH}_{2} \mathrm{OH}\right)^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.65(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH} \mathrm{C}_{2} \mathrm{Ph}\right) .4 .25\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 10,4-\mathrm{H}\right), 4.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 3.4$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.15(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}), 3.1(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H}), 2.52(1 \mathrm{H}$, d, $\left.J_{2.2} .5,2-\mathrm{H}^{\prime}\right) .2 .45-2.05(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H})$ and $1.5-1.15(2$ $\mathrm{H}, \mathrm{m}, 7-$ and $\left.8-\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 138.6(\mathrm{Cq}$ of Ph$), 128.4-126.6$ ( Ph ), $85.4(\mathrm{C}-6), 71.8(\mathrm{C}-5), 71.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.7(\mathrm{C}-4), 60.2(\mathrm{C}-$ 3 ), $57.6(\mathrm{OMe}), 49.1(\mathrm{C}-2)$ and 26.5 and $25.1(\mathrm{C}-7$ and -8$)$; $v_{\text {max }}$ (neat) $\mathrm{cm}^{1} 3450,1650,1456,1281,1206$ and 1106 (Found: $\mathrm{C}, 66.0 ; \mathrm{H}, 7.4 . \quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 65.93 ; \mathrm{H}$, $7.37 \%$ ).
(3R,5R,6R)-6-Benzyloxy-5-methoxy-1-oxaspiro[2.5]octan-4one 15
To a solution of dimethyl sulfoxide (DMSO) $\left(0.234 \mathrm{~cm}^{3}, 3.3\right.$ mmol ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ under argon was added dropwise at $-78^{\circ} \mathrm{C}$ trifluoroacetic anhydride (TFAA) ( $0.39 \mathrm{~cm}^{3}, 2.75$ mmol ). After stirring of the mixture for 30 min at $-78^{\circ} \mathrm{C}$, a solution of epoxide $13(0.291 \mathrm{~g}, 1.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ $\mathrm{cm}^{3}$ ) was added. The mixture was stirred for 45 min at $-78^{\circ} \mathrm{C}$. Triethylamine ( $0.612 \mathrm{~cm}^{3}, 4.4 \mathrm{mmol}$ ) was added dropwise and the mixture was stirred for an additional 1 h at $-78^{\circ} \mathrm{C}$ before being allowed to warm to $0^{\circ} \mathrm{C}$. The reaction mixture was quenched with water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 100 $\mathrm{cm}^{3}$ ); the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated off under reduced pressure. Flash chromatography (ethyl acetate-heptane; 2:8) afforded the keto epoxide 15 as an oil ( $0.27 \mathrm{~g}, 94 \%$ ), $[\alpha]_{\mathrm{D}}^{20}-1$ ( $c 1.05 ; \mathrm{CHCl}_{3}$ ); $m / z$ (CI) 263 $(\mathrm{MH})^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.33(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 4.68\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.16(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.1\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 2.6,5-\mathrm{H}\right), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.25\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} .5,2-\mathrm{H}\right), 2.78\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} .5,2-\mathrm{H}^{\prime}\right)$ and $2.43-$ $2.0\left(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}, 8-\mathrm{H}\right), 1.6\left(1 \mathrm{H}, \mathrm{dt}, J_{8.8} 14, J_{8.7}=J_{8,7}=5\right.$, $\left.8^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 201.7(\mathrm{C}-4), 137.7(\mathrm{Cq}$ of Ph$), 128-127.3$ ( Ph ), 86.5 (C-6), 76.1 (C-5), 71.5 ( $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 59.9(\mathrm{C}-3), 58.1$ (OMe), $51.2(\mathrm{C}-2)$ and 26.7 and $24.9(\mathrm{C}-7$ and -8$)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1741,1094$ and 1060 (Found: C, 67.7; H, 6.8. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.54 ; \mathrm{H}, 6.80 \%$ ).

## (3R,4R,5R,6R)-6-Benzyloxy-4-isopropenyl-5-methoxy-1oxaspiro[2.5] octan-4-ol 16

To a stirred solution of acetone 2,4,6-triisopropylbenzenesulfonylhydrazone ${ }^{21}(1.28 \mathrm{~g}, 3.8 \mathrm{mmol})$ in dry THF $\left(12 \mathrm{~cm}^{3}\right)$ was added sec-BuLi [ $1.25 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in cyclohexane $\left(6.7 \mathrm{~cm}^{3}\right.$, $8.36 \mathrm{mmol})]$ at $-78^{\circ} \mathrm{C}$. After being stirred for 30 min at $-78^{\circ} \mathrm{C}$ under argon, the mixture was allowed to warm to $4^{\circ} \mathrm{C}$ before being recooled to $-78^{\circ} \mathrm{C}$ and a solution of the keto epoxide $15(0.4 \mathrm{~g}, 1.52 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise. The mixture was allowed to warm to room temp. The reaction was quenched with aq. ammonium chloride and the mixture was extracted with ethyl acetate. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated off under reduced pressure. Rapid flash chromatography with ethyl acetate-heptane ( $1: 9$ ) afforded the addition product 16 as an oil $(0.28 \mathrm{~g}, 60 \%),[\alpha]_{\mathrm{D}}^{20}-5\left(c 0.77 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; m / z(\mathrm{CI}) 305$ $\left(\mathrm{MH}^{+}\right), 287\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 273(\mathrm{MH}-\mathrm{MeOH})^{+}, 255$ $\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}\right)^{+}, \quad 197\left(\mathrm{MH}-\mathrm{PhCH}_{2} \mathrm{OH}\right), 179$ $\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{PhCH}_{2} \mathrm{OH}\right)$ and $165\left(\mathrm{MH}-\mathrm{PhCH}_{2} \mathrm{OH}-\right.$ $\mathrm{MeOH})^{+} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.25(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH})$, $5.05(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 4.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.15(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $3.6(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}), 3.4(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.9(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}), 2.45(1 \mathrm{H}$, $\left.\mathrm{d}, 2-\mathrm{H}^{\prime}\right), 2.4(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.1(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.7\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}^{\prime}\right), 1.25\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 143.3$ $\left(\mathrm{C}=\mathrm{CH}_{2}\right), 137.7,128.5,127.9$ and $127.7(\mathrm{Ph}), 115.1\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, $80.6(\mathrm{C}-6), 78.3(\mathrm{C}-4), 73.2(\mathrm{C}-5), 72.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.4(\mathrm{C}-3), 57.7$ (OMe), $50.4(\mathrm{C}-2) ; 25.7$ and $24.7(\mathrm{C}-8$ and -7$)$ and $20.6(\mathrm{Me})$ (Found: $\mathrm{C}, 71.0 ; \mathrm{H}, 8.1 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.11 ; \mathrm{H}$, $7.95 \%$ ).

## (3R,4S,5R,6R)-6-Benzyloxy-5-methoxy-4-(2-methyloxiran-2-yl)-1-oxaspiro[2.5]octan-4-ol 17

To a solution of alkene $16(0.28 \mathrm{~g}, 0.92 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $10 \mathrm{~cm}^{3}$ ) was added MCPBA ( $80 \% ; 0.24 \mathrm{~g}, 1.2 \mathrm{~mol}$ equiv.) at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h , another portion of MCPBA ( 0.8 mol equiv.) was added, and the mixture was stirred for an additional 3 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ and washed successively with saturated aq. $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and saturated brine ( 50 $\mathrm{cm}^{3}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated off under reduced pressure. Flash chromatography (ethyl acetateheptane, elution gradient; 7:3) gave the epoxide 17 as an oil
$(0.11 \mathrm{~g}, 37 \%),[\alpha]_{\mathrm{D}}^{20}-53\left(c \mathrm{l} .3 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; m / z(\mathrm{CI}) 321\left(\mathrm{MH}^{+}\right)$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.65\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 4.0(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 3.5(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.95\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} 4\right.$, $2-\mathrm{H}), 2.75\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 5\right.$, oxirane $\left.3-\mathrm{H}\right), 2.55\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}^{\prime}\right), 2.4$ (1 H, d, oxirane 3-H'), $2.3(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.05(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.8$ $\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}^{\prime}\right), 1.4(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.3\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz}) 138.7$ and $129.1-128.4(\mathrm{Ph}), 81.1(\mathrm{C}-6), 75.4$ and $75.1(\mathrm{C}-$ 5 and -4$), 72.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 62.2$ and $57.7(\mathrm{C}-3$ and oxirane $\mathrm{C}-2)$, $59.0(\mathrm{OMe}), 50.7$ and $50.4(\mathrm{C}-2$, oxirane $\mathrm{C}-3), 27.1$ and $25.3(\mathrm{C}-8$ and -7 ) and 20.5 (Me) (Found: $\mathrm{C}, 67.5 ; \mathrm{H}, 7.4 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$ requires $\mathrm{C}, 67.48 ; \mathrm{H}, 7.55 \%$ ).

## (3R,4R,5R,6R)-6-Benzyloxy-5-methoxy-4-(2-trimethylsilyl-ethynyl)-1-oxaspiro[2.5]octan-4-ol 18

To a solution of trimethylsilylacetylene $\left(0.155 \mathrm{~cm}^{3}, 1.1 \mathrm{mmol}\right)$ in dry diethyl ether $\left(4 \mathrm{~cm}^{3}\right)$ was added, at $-78^{\circ} \mathrm{C}$, butyllithium ( $1.6 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.1 \mathrm{mmol}$ ). The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and a solution of keto epoxide $15(0.205 \mathrm{~g}, 0.78 \mathrm{mmol})$ in dry toluene $\left(4 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, quenched with water, and diluted with diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$. The organic layer was washed successively with saturated aq. $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and saturated brine ( $50 \mathrm{~cm}^{3}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated off under reduced pressure. Flash chromatography (ethyl acetate-heptane; $2: 8$ ) gave the crystalline silane 18 $(71 \%),[\alpha]_{\mathrm{D}}^{20}-24\left(c 0.65 ; \mathrm{CHCl}_{3}\right) ; m / z(\mathrm{CI}) 361(\mathrm{MH})^{+} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 7.33(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.05(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 3.66\left(1 \mathrm{H}, \mathrm{d}, J_{5.4} 2.5,5-\mathrm{H}\right), 3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.21(1 \mathrm{H}$, $\left.\mathrm{d}, J_{2,2} .5,2-\mathrm{H}\right), 2.6\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} \cdot 5,2^{\prime}-\mathrm{H}\right), 1.83(5 \mathrm{H}, \mathrm{m}, 7-\mathrm{and}$ $8-\mathrm{H}_{2}, \mathrm{OH}$ ) and $0.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right.$ ) (Found: C, 66.7; H, 7.6. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 66.63 ; \mathrm{H}, 7.83 \%$ ).

## ( $3 R, 4 R, 5 R, 6 R$ )-6-Benzyloxy-5-methoxy-4-vinyl-1-oxaspiro-

 [2.5] octan-4-ol 19A solution of epoxide $18(0.2 \mathrm{~g}, 0.55 \mathrm{mmol})$ in dry THF $\left(4 \mathrm{~cm}^{3}\right)$ was treated with a $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of tetrabutylammonium fluoride (TBAF) in THF ( $0.66 \mathrm{~cm}^{3}, 0.66 \mathrm{mmol}$ ) for 30 min at room temp. under argon. The solvent was evaporated off under reduced pressure and the residue was purified over silica gel. The mixture was diluted with diethyl ether ( $150 \mathrm{~cm}^{3}$ ). The organic layer was washed with saturated brine $\left(100 \mathrm{~cm}^{3}\right)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated off under reduced pressure. The residue was taken up in benzene ( $20 \mathrm{~cm}^{3}$ ) and was hydrogenated ( 1 atm ) for 1 h in the presence of Lindlar catalyst ( 0.04 g ). The solution was filtered on a Celite pad and the filtrate was evaporated under reduced pressure. The residue was chromatographed on a silica gel column (ethyl acetateheptane; 2.5:7.5) to yield title compound 19 ( $0.134 \mathrm{~g}, 84 \%$ ), $[\alpha]_{\mathrm{D}}^{20}-36\left(c 0.8 ; \mathrm{CHCl}_{3}\right) ; m /=(\mathrm{CI}) 291(\mathrm{MH})^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $7.33(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.7\left(\mathrm{I} \mathrm{H}\right.$, dd, $J_{\text {vic }} \mathrm{I} 7$ and $\left.10, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.56$ ( $\left.1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }} 17, J_{\text {gem }} 3, \mathrm{CH}=\mathrm{CH} \mathrm{H}\right), 5.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}=\mathrm{CH} H)$, $4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.13(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 3.4(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.33\left(\mathrm{l} \mathrm{H}, \mathrm{d}, J_{5.4} 3,5-\mathrm{H}\right), 2.88(1 \mathrm{H}$, $\left.\mathrm{d}, J_{2,2} .4 .5,2-\mathrm{H}\right), 2.51\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} .4 .5,2-\mathrm{H}^{\prime}\right), 2.4(1 \mathrm{H}, \mathrm{td}$, $8-\mathrm{H}), 2.1(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.75\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}^{\prime}\right)$ and $1.18(1 \mathrm{H}, \mathrm{m}$, $\left.8^{\prime}-\mathrm{H}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{1} 1726,1455,1277,1275,1111$ and 107 I (Found: $\mathrm{C}, 70.6 ; \mathrm{H}, 7.7 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.32 ; \mathrm{H}$, $7.64 \%$ ).

## (3R,4R,5R,6R)-6-Benzyloxy-5-methoxy-4-(oxiran-2-yl)-1oxaspiro[2.5] octan-4-ol 20

To a solution of alkene $19(0.108 \mathrm{~g}, 0.37 \mathrm{mmol})$ and vanadyl acetylacetonate ( $0.014 \mathrm{~g}, 0.052 \mathrm{mmol}$ ) in dry benzene $\left(5 \mathrm{~cm}^{3}\right)$ was added a $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of tert-butyl hydroperoxide in toluene ( $0.246 \mathrm{~cm}^{3}, 0.74 \mathrm{mmol}$ ). The mixture was stirred at room temp. under argon for 2 h . The reaction mixture was diluted with diethyl ether ( $100 \mathrm{~cm}^{3}$ ) and washed successively with $10 \%$ aq. sodium thiosulfate ( $40 \mathrm{~cm}^{3}$ ) and saturated brine ( $40 \mathrm{~cm}^{3}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated
off under reduced pressure. Flash chromatography (ethyl acetate-heptane; $3: 7$ ) afforded compound 20 as an oil $(0.098 \mathrm{~g}$, $86 \%),[\alpha]_{\mathrm{D}}^{20}-86\left(c \quad 1.4 ; \mathrm{CHCl}_{3}\right) ; m / z(\mathrm{CI}) 307(\mathrm{MH})^{+} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 7.33(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ph}\right), 4.3(1 \mathrm{H}$, br s, $\mathrm{OH}), 4.15(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.4(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.35\left(1 \mathrm{H}, \mathrm{d}, J_{5.4}\right.$ $2.5,5-\mathrm{H}), 3.33\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} .4 .5,2-\mathrm{H}\right), 2.96(1 \mathrm{H}, \mathrm{dd}$, $J_{2^{\prime} \cdot 3^{\prime}(t r a n s)}=2.5, J_{2^{\prime} \cdot 3^{\prime}(c i s)}=5.5$, oxirane $\left.2^{\prime}-\mathrm{H}\right), 2.91(1 \mathrm{H}$, dd, $J_{\left.3^{\prime} .2 \text { (trans }\right)} 5.5, J_{3^{\prime} .3^{\prime .}} 4 \mathrm{~Hz}$, oxirane $\left.3^{\prime}-\mathrm{H}\right), 2.68(1 \mathrm{H}$, dd, oxirane $\left.3^{\prime \prime}-\mathrm{H}\right), 2.63\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} .4 .5,2^{\prime}-\mathrm{H}\right), 2.5(1 \mathrm{H}, \mathrm{td}, 8-\mathrm{H})$, $2.1\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}^{\prime}\right), 1.73\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}^{\prime}\right)$ and $1.15\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\prime}\right)$; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3460,1174,1107$ and 1069 (Found: C, 66.4; H, 7.3. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 66.65 ; \mathrm{H}, 7.24 \%$ ).

## (3R,4R,5R,6R)-6-Benzyloxy-5-methoxy-4-(pent-1-ynyl)-1-oxaspiro[2.5]octan-4-ol 21

To a solution of pent-1-yne ( $0.144 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}$ ) in dry diethyl ether ( $5 \mathrm{~cm}^{3}$ ) was added, at $-78^{\circ} \mathrm{C}$, butyllithium ( 1.4 mol $\mathrm{dm}^{3}$ ) in hexane ( $\left.1.07 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}\right)$. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and a solution of keto epoxide $15(0.262 \mathrm{~g}$, 1 mmol ) in dry toluene ( $5 \mathrm{~cm}^{3}$ ) was then added. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, quenched with water and diluted with diethyl ether ( $100 \mathrm{~cm}^{3}$ ). The organic layer was washed with saturated brine ( $50 \mathrm{~cm}^{3}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated off under reduced pressure. Flash chromatography (ethyl acetate-heptane; 1.5:8.5) gave compound 21 as an oil $(0.255 \mathrm{~g}, 77 \%),[\alpha]_{\mathrm{D}}^{20}-23\left(c \cdot 1.1 ; \mathrm{CHCl}_{3}\right)$; $m / z(\mathrm{CI}) 331(\mathrm{MH})^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.66(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.65\left(1 \mathrm{H}, \mathrm{d}, J_{5.4} 2.5,5-\mathrm{H}\right), 3.6$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.21\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} \cdot 4.5,2-\mathrm{H}\right), 2.63\left(1 \mathrm{H}, \mathrm{d}, J_{2 \cdot, 2} 4.5\right.$, $\left.2^{\prime}-\mathrm{H}\right), 2.17\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}_{\mathrm{CH}} 7, \mathrm{C} \equiv \mathrm{CCH}_{2}\right), 1.96-1.76(5 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 7-$ and $\left.8-\mathrm{H}_{2}\right), 1.5\left(2 \mathrm{H}, \mathrm{m}, J_{\mathrm{CH}} 7, \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}\right)$ and $0.95(3 \mathrm{H}, \mathrm{t}$, $J_{\mathrm{CH}} 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$ ); $v_{\max }$ (neat) $/ \mathrm{cm}^{1} 3465,2360,2342,2241$, 1577, 1174, 1130 and 1055 (Found: C, $72.5 ; \mathrm{H}, 8.1 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 72.70 ; \mathrm{H}, 7.93 \%$ ).

## (3R,4R,5R,6R)-6-Benzyloxy-5-methoxy-4-(pent-1-enyl)-1-oxaspiro[2.5]octan-4-ol 22

A solution of alkyne $21(0.198 \mathrm{~g}, 0.6 \mathrm{mmol})$ in dry benzene ( 20 $\mathrm{cm}^{3}$ ) was hydrogenated ( 1 atm ) for 1 h in the presence of Lindlar catalyst ( 0.04 g ). The solution was filtered on a Celite pad and the filtrate was evaporated under reduced pressure. The residue was chromatographed on a silica gel column (ethyl acetate--heptane; $2.5: 7.5$ ) to yield the alkene $22(0.176 \mathrm{~g}, 88 \%$ ), $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.56\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{CHCH}} 12, J_{\mathrm{CHCH}_{2}}\right.$ $\left.7, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.25\left(\mathrm{I} \mathrm{H}, \mathrm{d}, J_{\mathrm{CHCH}} 12, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 4.65(2$ $\mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{Ph}), 3.95(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.51(3$ $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50\left(1 \mathrm{H}, \mathrm{d}, J_{5,6} 2.5,5-\mathrm{H}\right), 3.0\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} .5,2-\mathrm{H}\right)$, $2.52\left(1 \mathrm{H}, \mathrm{d}, J_{2 \cdot .2} 5,2-\mathrm{H}^{\prime}\right), 2.4\left(2 \mathrm{H}, \mathrm{qd}, J_{\mathrm{CH}} 7, \mathrm{CH}=\mathrm{CHCH}_{2}\right)$, $2.03(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H}), 1.8\left(1 \mathrm{H}, \mathrm{m}, 7^{\prime}-\mathrm{H}\right), 1.4\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\prime}\right.$ and $\mathrm{CH}_{2} \mathrm{Me}$ ) and $0.92\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{CH}} 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ (Found: C, 72.4; $\mathrm{H}, 8.2 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 72.26 ; \mathrm{H}, 8.49 \%$ ).

## (3R,4S,5R,6R)-6-Benzyloxy-5-methoxy-4-(3-propyloxiran-2-yl)-1-oxaspiro[2.5]octan-4-ol 23

To a solution of alkene $22(0.176 \mathrm{~g}, 0.53 \mathrm{mmol})$ and vanadyl acetylacetonate $(0.02 \mathrm{~g}, 0.074 \mathrm{mmol})$ in dry benzene $\left(5 \mathrm{~cm}^{3}\right)$ was added a $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of tert-butyl hydroperoxide in toluene ( $0.354 \mathrm{~cm}^{3}, 1.06 \mathrm{mmol}$ ). The mixture was stirred at room temp. under argon for 2 h , diluted with diethyl ether ( 100 $\mathrm{cm}^{3}$ ), washed successively with $10 \%$ aq. sodium thiosulfate ( 40 $\mathrm{cm}^{3}$ ) and saturated brine ( $40 \mathrm{~cm}^{3}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvents were evaporated off under reduced pressure. Flash chromatography (ethyl acetate-heptane; 2.5:7.5) afforded title compound 23 as an oil $(0.161 \mathrm{~g}, 87 \%),[\alpha]_{\mathrm{D}}^{20}-38(c \quad 1.75$; $\left.\mathrm{CHCl}_{3}\right) ; m / z(\mathrm{CI}) 349(\mathrm{MH})^{+} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $3.45(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.4\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 2.5,5-\mathrm{H}\right), 3.34(1 \mathrm{H}, \mathrm{d}$, $\left.J_{2.2} \cdot 4.5,2-\mathrm{H}\right), 2.9\left(1 \mathrm{H}, \mathrm{q}, J_{\mathrm{CHCH}_{2}} 7.5\right.$, oxirane $\left.3-\mathrm{H}\right), 2.87(1 \mathrm{H}, \mathrm{d}$, $J_{\mathrm{CHCH}} 3.75$, oxirane $2-\mathrm{H}$ ), 2.6 I ( $1 \mathrm{H}, \mathrm{d}, J_{2.2} .4 .5,2-\mathrm{H}^{\prime}$ ), 2.28, 2.06,
1.51 and $1.28\left(8 \mathrm{H}, \mathrm{m}, 7-\right.$ and $8-\mathrm{H}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$ and 1.0 ( $3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}$ ); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3469,1454,1178,1110$ and 1069 (Found: C, $69.2 ; \mathrm{H}, 8.2 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$ requires $\mathrm{C}, 68.94 ; \mathrm{H}$, $8.1 \%$ ).

## (2S,3R,4R)-2,4-Dihydroxy-3-methoxycyclohexanone 24

A mixture of $\alpha, \beta$-unsaturated ketone $9(4.96 \mathrm{~g}, 20 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(500 \mathrm{mg})$ in ethanol ( $50 \mathrm{~cm}^{3}$ ) was hydrogenated under 1 atm for 3 h at room temp. The mixture was filtered through a Celite pad and the pad was washed with ethanol. The solvent was evaporated off under reduced pressure and the residue was purified over silica gel with ethyl acetate as eluent to give the reduced product 24 as a crystalline compound ( 2.72 g , $85 \%$ ), mp (from $\left.\mathrm{Et}_{2} \mathrm{O}\right) 79-81^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-83\left(c 0.75 ; \mathrm{CHCl}_{3}\right)$; $v_{\max }($ Nujol $) / \mathrm{cm}^{1} 3475,3375,1720$ and $1103 ; m / z$ (CI) 161 $\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 4.46\left(1 \mathrm{H}, \mathrm{d}, J_{2.3} 9.5,2-\mathrm{H}\right), 4.33(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}, 4-\mathrm{H}), 3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J_{3,2} 9.5, J_{3,4} 2.5,3-\right.$ $\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{td}, 6-\mathrm{H}), 2.38\left(1 \mathrm{H}, \mathrm{dq}, 6-\mathrm{H}^{\prime}\right), 2.28(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $1.63\left(1 \mathrm{H}, \mathrm{tq}, 5-\mathrm{H}^{\prime}\right)$ (Found: $\mathrm{C}, 52.5 ; \mathrm{H}, 7.7 . \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C} .52 .49 ; \mathrm{H}, 7.55 \%$ ).

## (1S,2S,3R)-2-Methoxy-6-oxo-3-triethylsiloxycyclohexyl benzoate 25

To a solution of ketone 24 ( $2.88 \mathrm{~g}, 18 \mathrm{mmol}$ ) in dry pyridine ( 54 $\mathrm{cm}^{3}$ ) was added dropwise benzoyl chloride ( $2.3 \mathrm{~cm}^{3}, 19.8 \mathrm{mmol}$ ) at $-7^{\circ} \mathrm{C}$ (ice-salt-bath). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Ice was added and the pyridine was evaporated off under reduced pressure. The residue was diluted with dichloromethane ( $200 \mathrm{~cm}^{3}$ ) and washed successively with saturated aq. sodium hydrogen carbonate ( $100 \mathrm{~cm}^{3}$ ) and saturated brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated off under reduced pressure. Flash chromatography (ethyl acetate-heptane; $6: 4$ ) afforded the benzoate ketone as an oil compound, which was used for the next reaction without further purification $(4.47 \mathrm{~g}, 94 \%)$.

To a solution of the benzoate ketone ( $4.47 \mathrm{~g}, 16.93 \mathrm{mmol}$ ) and imidazole ( $2.845 \mathrm{~g}, 47.4 \mathrm{mmol}$ ) in dry DMF $\left(34 \mathrm{~cm}^{3}\right)$ was added dropwise chlorotriethylsilane ( $3.97 \mathrm{~cm}^{3}, 23.7 \mathrm{mmol}, 1.4$ mol equiv.) and the mixture was stirred for 2 h under argon at room temp. The solvent was evaporated off under reduced pressure. The residue was diluted with diethyl ether ( $200 \mathrm{~cm}^{3}$ ) and was washed with water ( $100 \mathrm{~cm}^{3}$ ). The aqueous layer was extracted with diethyl ether ( $100 \mathrm{~cm}^{3}$ ) and the combined organic layers were washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. Flash chromatography (ethyl acetate-heptane; 2:8) gave the protected product 25 as an oil $(6.21 \mathrm{~g}, 97 \%),[\alpha]_{\mathrm{D}}^{20}-88$ (c 1; $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1738,1724,1276,1115,1097$ and 1016; $m /=(\mathrm{C} 1) 379\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}} 8.03-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.75$ (1 H. d, $\left.J_{1.2} 10.5,1-\mathrm{H}\right), 4.41(1 \mathrm{H}$, br s, $3-\mathrm{H}), 3.48(1 \mathrm{H}$, dd, $\left.J_{2.1} 10.5, J_{2.3} 2,2-\mathrm{H}\right), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.95(1 \mathrm{H}, \mathrm{td}, 5-\mathrm{H})$, 2.31 (1 H. qd, $\left.5-\mathrm{H}^{\prime}\right), 2.0(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.63(1 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{H}^{\prime}\right), \mathrm{I} .0\left(9 \mathrm{H}, \mathrm{t} . \mathrm{Me} \mathrm{CH}_{2} \mathrm{Si}\right)$ and $0.68\left(6 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2} \mathrm{Si}\right)$ (Found: C. 63.3; H, 8.1. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 63.49 ; \mathrm{H}$, $7.93 \%$ ).

## (1R,2S,3R)-2-Methoxy-6-methylene-3-(triethylsiloxy)cyclohexanol 26

To a solution of methyltriphenylphosphonium bromide ( 14 g , 39 mmol ) in dry THF ( $39 \mathrm{~cm}^{3}$ ) was added, under argon, butyllithium in hexane ( $1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 25.7 \mathrm{~cm}^{3}, 36 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ under argon. A solution of ketone 25 ( $2.457 \mathrm{~g}, 6.5 \mathrm{mmol}$ ) in THF ( $24 \mathrm{~cm}^{3}$ ) was transferred dropwise via a cannula to the reaction mixture at $-10^{\circ} \mathrm{C}$. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h and at room temp. for 2 h . Saturated aq. ammonium chloride ( $100 \mathrm{~cm}^{3}$ ) was added and the mixture was extracted with diethyl ether (200 $\mathrm{cm}^{3}$ ). The aqueous layer was extracted with diethyl ether ( 100
$\mathrm{cm}^{3}$ ). The combined organic layers were washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. Flash chromatography (ethyl acetate-heptane; 2:8) gave the olefinic compound 26 as an oil $(1.24 \mathrm{~g}, 70 \%),[\alpha]_{\mathrm{D}}^{20}-85$ (c $1.12 ; \mathrm{CHCl}_{3}$ ); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3462,1654,1119,1084$ and 1017; $m / z(\mathrm{CI}) 273\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}} 5.05(1 \mathrm{H}, \mathrm{d}, J 1,=\mathrm{CHH}), 4.8(1$ $\mathrm{H}, \mathrm{d}, J 2,=\mathrm{CH} H), 4.35\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 9.5,1-\mathrm{H}\right), 4.28(1 \mathrm{H}$, br s, 3H), $3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.95(1 \mathrm{H}$, br s, OH $), 2.83\left(1 \mathrm{H}, \mathrm{dd}, J_{2,1}\right.$ $\left.9.5, J_{2,3} 2.5,2-\mathrm{H}\right), 2.46(1 \mathrm{H}, \mathrm{td}, 5-\mathrm{H}), 2.13\left(1 \mathrm{H}, \mathrm{dt}, 5-\mathrm{H}^{\prime}\right), 1.8(1$ $\mathrm{H}, \mathrm{dq}, 4-\mathrm{H}), 1.4\left(1 \mathrm{H}, \mathrm{tq}, 4-\mathrm{H}^{\prime}\right), 0.96\left(9 \mathrm{H}, \mathrm{t}, M e \mathrm{CH}_{2} \mathrm{Si}\right)$ and 0.6 $\left(6 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2} \mathrm{Si}\right.$ ) (Found: C, 61.7; H, 10.6. $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 61.72 ; \mathrm{H}, 10.36 \%$ ).
(3R/S,4S,5S,6R)-5-Methoxy-6-triethylsiloxy-1-oxaspiro[2.5]-octan-4-ol 27 and 28
To a solution of olefin $26(1.224 \mathrm{~g}, 4.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 22 $\mathrm{cm}^{3}$ ) was added MCPBA ( $70 \% ; 1.33 \mathrm{~g}, 5.4 \mathrm{mmol}$ ) in portions at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$, washed successively with saturated aq. sodium hydrogen carbonate ( $50 \mathrm{~cm}^{3}$ ) and saturated brine ( $50 \mathrm{~cm}^{3}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. Flash chromatography with ethyl acetate-heptane ( $2: 8$ ) gave the epoxide 28 as an oil $(1.09 \mathrm{~g}$, $84 \%$ ). Further elution with ethyl acetate-heptane $(3: 7)$ afforded the second epoxide 27, also as an oil $(0.13 \mathrm{~g}, 10 \%)$.

Isomer 28 had $[\alpha]_{\mathrm{D}}^{20}-60\left(c 1.28 ; \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3450,1458,1413,1238,1119,1094,1023,1006$ and $986 ; m / z(\mathrm{CI})$ $289\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}} 4.31(1 \mathrm{H}$, br s, $6-\mathrm{H}), 4.05\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 9,4-\mathrm{H}\right)$, $3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.13\left(1 \mathrm{H}, \mathrm{dd}, J_{5.4} 9, J_{5.6} 2.5,5-\mathrm{H}\right), 3.1(1 \mathrm{H}$, $\left.\mathrm{d}, J_{2,2} \cdot 5,2-\mathrm{H}\right), 3.05(1 \mathrm{H}$, br s, OH$), 2.61\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}^{\prime}\right), 2.23(1$ $\mathrm{H}, \mathrm{td}, 8-\mathrm{H}), 1.76\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.3\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\prime}\right), 0.96(9 \mathrm{H}, \mathrm{t}$, $\mathrm{MeCH}_{2} \mathrm{Si}$ ) and $0.63\left(6 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2} \mathrm{Si}\right)$ (Found: C, $58.3 ; \mathrm{H}, 9.7$. $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 58.29 ; \mathrm{H}, 9.78 \%$ ).

Isomer 27 had $[\alpha]_{\mathrm{D}}^{20}-22\left(c 0.625 ; \mathrm{CHCl}_{3}\right) ; m / z$ (CI) 289 $\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}} 4.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 4.16\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 9.5,4-\mathrm{H}\right), 3.43$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.13\left(1 \mathrm{H}, \mathrm{d}, J_{2,2} .5,2-\mathrm{H}\right), 2.95\left(1 \mathrm{H}, \mathrm{dd}, J_{5.4} 9.5\right.$, $\left.J_{5,6} 2,5-\mathrm{H}\right), 2.5\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}^{\prime}\right), 2.36(1 \mathrm{H}, \mathrm{td}, 8-\mathrm{H}), 2.3(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 1.85(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.48\left(1 \mathrm{H}, \mathrm{tq}, 7-\mathrm{H}^{\prime}\right), 1.16(1 \mathrm{H}, \mathrm{dt}$, $\left.8-\mathrm{H}^{\prime}\right), 0.96\left(9 \mathrm{H}, \mathrm{t}, \mathrm{Me} \mathrm{CH}_{2} \mathrm{Si}\right)$ and $0.63\left(6 \mathrm{H}, \mathrm{q}, \mathrm{MeCH} \mathrm{Hi}_{2}\right)$ (Found: C, 58.3; H, 9.8\%).

## (3R,5R,6R)-5-Methoxy-6-triethylsiloxy-1-oxaspiro[2.5]octan-4-one 29

To a solution of DMSO $\left(0.426 \mathrm{~cm}^{3}, 6 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $5 \mathrm{~cm}^{3}$ ) under argon was added dropwise at $-78^{\circ} \mathrm{C} \mathrm{TFAA}$ $\left(0.706 \mathrm{~cm}^{3}, 5 \mathrm{mmol}\right)$. After being stirred for 30 min at $-78^{\circ} \mathrm{C}$, the solution was treated with a solution of epoxide 28 $(0.576 \mathrm{~g}, 2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 1 h , triethylamine $\left(1.112 \mathrm{~cm}^{3}, 8 \mathrm{mmol}\right)$ was added dropwise, and the mixture was stirred for an additional 1 h at $-78^{\circ} \mathrm{C}$ and was then allowed to warm to $0^{\circ} \mathrm{C}$. The reaction was quenched with water $\left(50 \mathrm{~cm}^{3}\right)$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure at room temp. Flash chromatography (ethyl acetate-heptane; 1:9) afforded the keto epoxide 29 as an oil ( $0.504 \mathrm{~g}, 88 \%$ ), $[x]_{\mathrm{D}}^{20}-87$ (c 1.15; $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1745,1097,1066$ and $1019 ; \mathrm{m} / \mathrm{z}(\mathrm{CI})$ $287\left(\mathrm{MH}^{+}\right) ; \delta_{\mathrm{H}} 4.4(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.93\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 2.5,5-\mathrm{H}\right)$, $3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.25\left(1 \mathrm{H}, \mathrm{d}, J_{2.2^{\prime}} 5,2-\mathrm{H}\right), 2.76(1 \mathrm{H}, \mathrm{d}$, $\left.2-\mathrm{H}^{\prime}\right), 2.45(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.03\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.58(1 \mathrm{H}, \mathrm{dt}$, $\left.8-\mathrm{H}^{\prime}\right), 0.96\left(9 \mathrm{H}, \mathrm{t}, \mathrm{Me} \mathrm{CH}_{2} \mathrm{Si}\right)$ and $0.63\left(6 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2} \mathrm{Si}\right)$ (Found: C, 58.3; H, 8.8. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 58.70 ; \mathrm{H}$, $9.15 \%$ ).
( $3 R, 4 R, 5 R, 6 R$ )-4-( $1^{\prime}, 5^{\prime}$-Dimethylhexa-1',4'-dienyl)-5-methoxy-6-triethylsiloxy-1-oxaspiro[2.5] octan-4-ol 30
To a stirred solution of acetone 2,4,6-triisopropylbenzenesulfonylhydrazone ${ }^{21}(1.014 \mathrm{~g}, 3 \mathrm{mmol})$ in dry THF $\left(7.5 \mathrm{~cm}^{3}\right)$
was added sec -butyllithium ( $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ ) in cyclohexane ( 6.6 mmol ) at $-78^{\circ} \mathrm{C}$. After the mixture had been stirred for 30 $\min$ at $-78^{\circ} \mathrm{C}$ under argon, 3,3-dimethylallyl bromide ( 0.49 $\mathrm{cm}^{3}, 4.2 \mathrm{mmol}$ ) was added and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$. An additional portion of sec-butyllithium (3.3 mmol ) was added and after the mixture had been stirred for 30 $\min$, the $-78^{\circ} \mathrm{C}$ bath was replaced with an ice-bath and the solution was stirred until nitrogen evolution ceased ( 5 min ). The solution was cooled again to $-78^{\circ} \mathrm{C}$ and a solution of the keto epoxide $29(0.43 \mathrm{~g}, 1.5 \mathrm{mmol})$ in dry toluene ( $5 \mathrm{~cm}^{3}$ ) was added. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, quenched with water, and extracted with diethyl ether ( $2 \times 100 \mathrm{~cm}^{3}$ ); the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated off under reduced pressure at $20^{\circ} \mathrm{C}$. Rapid flash chromatography (ethyl acetate-heptane; 1:9) afforded the addition product 30 as an oil ( $0.45,75 \%$ ), $[\alpha]_{\mathrm{D}}^{20}-75$ (c 1; $\mathrm{CHCl}_{3}$ ); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3452,1456,1377,1131,1112,1067,1049,1016$, 995 and $961 ; m / z(\mathrm{CI}) 397\left(\mathrm{MH}^{+}\right)$and $379\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)^{+} ; \delta_{\mathrm{H}}$ $5.7\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime} \cdot 3^{\prime}} .7,2^{\prime}-\mathrm{H}\right), 5.1\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime} \cdot 4} \cdot 7,4^{\prime}-\mathrm{H}\right), 4.9(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 4.44(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.5\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 2.3,5-\mathrm{H}\right), 3.45(3$ $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.81\left(1 \mathrm{H}, \mathrm{d}, J_{2,2^{\cdot}} 5,2-\mathrm{H}\right), 2.75\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{2}\right)$, $2.46(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.41\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}^{\prime}\right), 1.88\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right)$, $1.66\left(6 \mathrm{H}, \mathrm{s}, \mathrm{I}^{\prime}-\mathrm{and} 5^{\prime}-\mathrm{Me}\right)$, $1.61\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}_{3}\right), 1.25(1 \mathrm{H}, \mathrm{m}$, $\left.8-\mathrm{H}^{\prime}\right), 1.0\left(9 \mathrm{H}, \mathrm{t}, \mathrm{MeCH} \mathrm{C}_{2} \mathrm{Si}\right)$ and $0.66\left(6 \mathrm{H}, \mathrm{q}, \mathrm{MeCH}_{2} \mathrm{Si}\right)$ (Found: C, 66.6; H, 10.2. $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 66.62 ; \mathrm{H}$, $10.16 \%$ ).

## ( $3 R, 4 R, 5 R, 6 R$ )-5-Methoxy-4-[2'-methyl-3'-( $3^{\prime \prime}$-methylbut- $\mathbf{2}^{\prime \prime}$ -enyl)oxiran-2'-yl]-1-oxaspiro [2.5]octane-4,6-diol 31 and 32

To a solution of epoxy diene $30(0.297 \mathrm{~g}, 0.75 \mathrm{mmol})$ and vanadyl acetylacetonate ( $0.03 \mathrm{~g}, 0.11 \mathrm{mmol}$ ) in dry benzene ( $7.5 \mathrm{~cm}^{3}$ ) was added a $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of tert-butyl hydroperoxide in toluene $\left(0.5 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}\right)$. The mixture was stirred at room temp. under argon for 2 h , diluted with diethyl ether ( $120 \mathrm{~cm}^{3}$ ), washed successively with $10 \%$ aq. sodium thiosulfate ( $40 \mathrm{~cm}^{3}$ ) and saturated brine ( $40 \mathrm{~cm}^{3}$ ) dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. Flash chromatography, with ethyl acetate-heptane ( $2: 8$ ) afforded the protected epoxides as an inseparable mixture ( $0.223 \mathrm{~g}, 72 \%$ ). This mixture was diluted in dry THF and treated with a 1 mol $\mathrm{dm}^{-3}$ solution of TBAF in THF ( $0.7 \mathrm{~cm}^{3}, 0.7 \mathrm{mmol}$ ) for 30 min at room temp. under argon. The solvent was evaporated off under reduced pressure and the residue was purified over silica gel. Elution with ethyl acetate-heptane (6:4) gave the crystalline diepoxide $31(0.103 \mathrm{~g})$ and the second epoxide 32 as an oil ( $0.055 \mathrm{~g}, 72 \%$ ).

Compound 31 had mp $67-69^{\circ} \mathrm{C}$ (from diethyl etherpentane) (lit., $\left.{ }^{1} 68-69^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{2}-83\left(c 0.5 ; \mathrm{CHCl}_{3}\right)\left[\right.$ lit., ${ }^{1}-88$ (c $\left.\left.0.45 ; \mathrm{CHCl}_{3}\right)\right] ; m / z(\mathrm{CI}) 299\left(\mathrm{MH}^{+}\right)$and $281\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}} 5.15\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime \prime}, 1 .} 7.5, J_{2^{\prime \prime}, 4^{\prime \prime}} 1.25,2^{\prime \prime}-\mathrm{H}\right), 4.4(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ $4.03(1 \mathrm{H}, \mathrm{d}, \mathrm{OH}), 3.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.51\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 2.5,5-\mathrm{H}\right)$, $3.49(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.96\left(1 \mathrm{H}, \mathrm{d}, J_{2.2^{2}} 4.2,2-\mathrm{H}\right), 2.86(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3^{\prime}, 1} \cdot 6.5,3^{\prime}-\mathrm{H}\right), 2.56(1 \mathrm{H}, \mathrm{td}, 8-\mathrm{H}), 2.55\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}^{\prime}\right), 2.38$ ( 1 $\left.\mathrm{H}, \mathrm{m}, J_{1 \cdots} 1^{\prime \prime} 14.5, J_{1^{\prime \prime}, 2^{\prime \prime}} 7.5, J_{1^{\prime \cdots}, 3^{*}} 6.5,1^{\prime \prime}-\mathrm{H}\right), 2.16\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\right.$ $\left.\mathrm{H}^{\prime}\right), 2.05\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\prime}\right), 1.83(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.74(6 \mathrm{H}, \mathrm{s}$, $=\mathrm{CMe}_{2}$ ), $1.65\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right)$ and $1.0\left(1 \mathrm{H}, \mathrm{dt}, 7-\mathrm{H}^{\prime}\right)$.

Compound 32 had $[\alpha]_{\mathrm{D}}^{20}-69\left(c 0.75 ; \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 3402, 2930, 1442, 1377, 1122, 1102 and 986; $m /=(\mathrm{CI}) 316(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right)^{+}, 299(\mathrm{MH})^{+}$and $281\left(\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)^{+} ; \delta_{\mathrm{H}} 5.15(1 \mathrm{H}, \mathrm{t}$, $\left.J_{2^{\prime \prime} .1 .} 7,2^{\prime \prime}-\mathrm{H}\right), 4.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 3.5\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 2.5,5-\mathrm{H}\right)$, $3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.29\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime} .1} .{ }^{6} .5\right.$, $\left.3^{\prime}-\mathrm{H}\right), 3.2\left(1 \mathrm{H}, \mathrm{d}, J_{2.2} \cdot 4.5,2-\mathrm{H}\right), 2.98(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.57(1 \mathrm{H}$, d, $2-\mathrm{H}^{\prime}$ ), $2.53(1 \mathrm{H}, \mathrm{td}, 8-\mathrm{H}), 2.35\left(1 \mathrm{H}, \mathrm{m}, J_{1 \cdots}{ }^{\ldots}\right.$. $14.5, J_{1}{ }^{\cdots} \cdot 2^{\prime \prime}$ $\left.7.5, J_{1^{\prime} .3} .6 .5, \mathrm{I}^{\prime \prime}-\mathrm{H}\right), 2.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{I}^{\prime \prime}-\mathrm{H}^{\prime}\right), 2.03$ ( $1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\prime}$ ), $1.86(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.73\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{H}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{Me}\right)$, $1.36\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right)$ and $1.05\left(1 \mathrm{H}, \mathrm{dt}, 7-\mathrm{H}^{\prime}\right)$ (Found: C, 64.6; H, 8.8. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5}$ requires $\mathrm{C}, 64.41 ; \mathrm{H}, 8.78 \%$ ).

## (-)-Ovalicin 33

To a solution of diepoxide alcohol $31(0.076 \mathrm{~g}, 0.25 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ was added, under argon, PDC ( 0.282 g , 0.75 mmol ) and the mixture was stirred for 5 h at room temp. The product was directly purified over silica gel (ethyl acetateheptane; 2:8) to give the keto diepoxides $\mathbf{3 3}$ as a crystalline compound ( $0.058 \mathrm{~g}, 78 \%$ ), mp $90-92^{\circ} \mathrm{C}$ (from diethyl etherpentane) (lit., ${ }^{1} 94-95^{\circ} \mathrm{C}$ ); $[\alpha]_{\mathrm{D}}^{20}-115\left(c 0.5 ; \mathrm{CHCl}_{3}\right)\left[\right.$ lit., ${ }^{1}$ $\left.-117\left(c 0.4 ; \mathrm{CHCl}_{3}\right)\right] ; \delta_{\mathrm{H}} \dagger 5.18\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime \prime}, 1^{\prime \prime}} 7.5,2^{\prime \prime}-\mathrm{H}\right), 4.23$ (1 H, s, 2-H), $3.56(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.1(1 \mathrm{H}$, d, $\left.J_{\text {gem }} 4.2,4-\mathrm{CHH}\right), 2.9\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime} .1} 1^{6} 6.5,3^{\prime}-\mathrm{H}\right), 2.73(1 \mathrm{H}, \mathrm{d}$, $4-\mathrm{CH} H), 2.66-2.46\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{2}\right), 2.43\left(1 \mathrm{H}, \mathrm{m}, J_{1} \cdot .{ }^{\prime}\right.$. $\left.14.5, J_{1 * \cdot 2}{ }^{\prime \prime} 7.5, J_{1^{\prime} \cdot 3} \cdot 6.5,1^{\prime \prime}-\mathrm{H}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}^{\prime}\right), 1.75$ ( 3 $\left.\mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{Me}\right), 1.66\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{H}_{3}\right), 1.43\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}^{\prime}\right)$ and $(3 \mathrm{H}$, $\mathrm{s}, 2^{\prime}-\mathrm{Me}$ ).
$\dagger$ Unprimed locants refer to the quebrachitol numbering scheme, structure 1. Primed and doubly primed locants refer to the C-3 oxirane and dimethylallyl moieties, respectively.

## References

1 H. P. Sigg and H. P. Weber, Helv. Chim. Acta, 1968, 51, 1395; P. Bollinger, H. P. Sigg and H. P. Weber, Helv. Chim. Acta, 1973, 56, 819.
2 W. A. Zimmerman and G. R. Hartmann, Eur. J. Biochem., 1981, 118, 143; J. F. Borel, S. Lazary and H. Staehelin, Agents Actions, 1974, 4, 357.
3 E. J. Corey and J. P. Dittami, J. Am. Chem. Soc., 1985, 107, 256.
4 J. A. DiPaolo, D. S. Tarbell and G. E. Moore, Antibiot. Annu., 19581959, 541.
5 F. R. Hanson and T. E. Eble, J. Bacteriol., 1949, 58, 527.
6 M. C. McCowen, M. E. Callender and J. F. Lawlis, Science, 1951, 113, 202.
7 E. J. Corey and B. B. Snider. J. Am. Chem. Soc., 1972, 94, 2549.
8 D. Ingber, T. Fujita, S. Kishimoto, K. Sudo, T. Kanamaru, H. Brem and J. Folkman, Nature, 1990, 348, 555.
9 S. Marui and S. Kishimoto, Chem. Pharm. Bull., 1992, 40, 575; S. Marui, F. Itoh, Y. Kozai, K. Sudo and S. Kishimoto, Chem. Pharm. Bull., 1992, 40, 96; M. Kusaka, K. Sudo, T. Fujita, S. Marui, F. Itoh, D. Ingber and J. Folkman, Biochem. Biophys. Res. Commun., 1991, 174, 1070; T. Otsuka, T. Shibata, Y. Tsurumi. S. Takase, M. Okuhara, H. Teraano, M. Kohsaka and H. Imanaka, J. Antibiot., 1992, 45, 348: S. Kamei, H. Okada, Y. Inoue, T. Yoshioka, Y. Ogawa and H. Togughi, J. Pharmacol. Exp. Ther., 1993, 264, 469.

10 D. C. Billington, Drug Design Discovery, 1991, 8. 3
11 W. Auerbach and R. Auerbach, Pharmacol. Ther., 1994, 63, 265.
12 J. Folkman, C.R. Acad. Sci., Ser. 3, 1993, 316, 914.
13 N. Chida, K. Yamada and S. Ogawa, J. Chem. Soc., Perkin Trans. I, 1993, 1957 and references cited therein.
14 S. Bath, D. C. Billington, S. D. Gero, B. Quiclet-Sire and M. Samadi, J. Chem. Soc., Chem. Commun., 1994, 1495.

15 S. D. Gero, Tetrahedron Lett., 1966, 591.
16 E. J. Corey and R. A. E. Winter, J. Am. Chem. Soc., 1963, 85, 2677.
17 A. J. Fatiadi, Synthesis, 1976, 65.
18 A. Somasekar Rao in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and S. V. Ley, Pergamon Press, Oxford, 1991, vol. 7. p. 357
19 S. L. Huang, K. Omura and D. Swern, Synthesis, 1978, 297.
20 R. H. Shapiro, Org. React., 1975, 23, 405; R. M. Adlington and A. G. M. Barrett. J. Chem. Soc., Perkin Trans. I, 1981, 2848; R. M. Adlington and A. G. M. Barrett, Acc. Chem. Res., 1983, 16, 55 ; and see ref. 16 above.
21 N. J. Cusack, C. B. Reese. A. C. Risius and B. Roozpeikar, Tetrahedron, 1976, 32, 2157.
22 J. G. Hill, B. E. Rossiter and K. B. Sharpless, J. Org. Chem. 1983, 48. 3607 and references cited therein.

23 D. E. Cane and H. Levin, J. Am. Chem. Soc.. 1976, 98, 1183: D. E. Cane and S. L. Buchwald, J. Am. Chem. Soc., 1977, 99, 6132.

Paper 5/00236B
Received 10th January 1995
Accepted 31st January 1995

